
FRAME RATE UPSCALING
GAUTHAM KESINENI, TED XIAO, RAUL PURI

INTRODUCTION
Frame interpolation is a computer vi-

sion task that is largely performed on real
world video data. Interpolating interme-
diate frames between given video frames
would produce an increase in frames per sec-
ond (FPS). There are many potential applica-
tions of frame rate upscaling, but we see the
biggest impact in video streaming: this tech-
nique could allow for the streaming of lower
frame rate video that could then be interpo-
lated to generate more frames and produce
smoother high-framerate video.

STATE OF THE ART
Traditional frame interpolation usually

separates the image into components to mea-
sure the motion vectors of the image. These
vectors are used to find the location of dif-
ferent blocks at different points in time. This
generally works well but is not ideal. The
algorithm knows nothing about the way ob-
jects move in the real world and assumes all
motion is linear. When frame rates are very
low, the artifacts of this method start appear-
ing. For this reason, we believe there is great
promise in deep learning (DL) methods for
this problem. Currently, state of the art DL
models leverage variational autoencoders to
achieve this.

RESULTS

Expected Baseline Deep Conv GAN VAE

Expected Baseline Deep Conv GAN VAE

Expected Baseline Deep Conv GAN VAE

The deep convolution network performed
remarkably well for its simplicity. We found
that this network performed especially well
when the camera was moving but less so
when objects within the scene moved. The

GAN network generalized better. The base-
line model essentially performed linear gray
scale interpolation. The VAE tried to memo-
rize the image during the compression, and
merely scales up subsections of the image.

BASELINE MODEL
Our baseline model was a simple 3-layer

convolution. The biggest change we made
here was to use tanh instead of ReLu func-
tions and to normalize the inputs.

GAN MODEL
The Generative Adversarial Network

(GAN) model is an extension of our Deep
Convolution Model. Unlike typical GANs
where the input is random bits, we supply
the input as the before and after frames and
attach a normal discriminator component.
We applied both MSE and GAN updates to
the generator component to converge faster.

VAE MODEL
We tried using Variational AutoEncoders

(VAEs) in our experiments. Due to the com-
pressive nature of VAEs our results generally
ended up being rather blurry as shown.

DEEP CONVOLUTION MODEL
This was an extension of our first model.

We increased the number of layers to 6. The
biggest change is that we swapped the tanh
activations with ReLu and used a linear acti-
vation for our last layer. We found that tanh
would favor the values at 1 or −1 while a lin-
ear activation would treat all equally, as pixel
values should be.

METHODS
We tried several methods in our ap-

proach: Simple Convolution (Baseline),
Deep Convolution, Variational AutoEn-
coders, and GANs. More details on these
along with the results can be found in this
poster. Below is the loss over time while
training each of these models.

CONCLUSION
Throughout the course of this project we

experimented with numerous techniques.
Given more time we’d like to experiment
more with recurrence and longer windows
of prediction, experiment with residual con-
nections in our networks and possibly a U-
Net style VAE variant in order to mitigate
information loss. We learned a lot from this
class and our project. We hope to continue to
refine our results to see if we can publish.


