
Baseline Power Estimation

Ted Xiao
Hybrid Systems Laboratory

University of California, Berkeley
Email: tx@berkeley.edu

Sumedh Bhattacharya
Hybrid Systems Laboratory

University of California, Berkeley
Email: sumedh1234@berkeley.edu

I. INTRODUCTION

Energy usage control for commercial buildings can reduce
peak power consumption and stabilize overall power grid con-
sumption by intelligently applying inputs to individual build-
ings. However, in order to apply intelligent control, an accurate
tool is needed for calculating baseline power consumption.
This value is difficult to predict to an hourly degree of accuracy
without requiring building specific equipment. Specifically, in
this paper we study HVAC (Heating, Ventilation, and Air
Conditioning) systems in these commercial buildings as they
are a major source of power consumption, and their power
consumption patters follow a daily and seasonal trend. As
commercial buildings account for more than 35% of the
electricity consumption in the U.S. and 39% of this is due
to HVAC systems, an application of this baselining technique
would allow us to model 14% of the energy drawn on a power
grid without using any additional hardware [1]. In this paper,
we introduce three types of models: the first using only weather
data and Lasso regression, the second utilizing an EM approach
using time series forecasting that reduces error immensely,
and finally a combination of both TSF on the power readings
and the weather data using K-Nearest Neighbor and Recurrent
Neural Networks to gain an even finer level of accuracy.

Initially, our first attempt tried to fit a correlation between
publicly available weather data to understand the trends people
may have in power usage and its correlation with different
weather patterns. This was able to understand the general trend
of the power series data but still had too high of an error to be
used as a baseline value to apply control in future experiments
on. The power readings we obtained from SDH are in a scale of
0-100 where the value represents the percentage of maximum
power that is being used. For this, we wanted to be able to
predict the power values to an accuracy of at least below
2%. We propose a generalization of thermodynamic linear
models and time series forecasting to estimate the conditional
dependence on prior power use observations specific to a
building. We apply the Expectation Maximization algorithm to
explore the conditional dependence between time steps without
propagating errors that is caused by iterative prediction.

II. PREVIOUS WORK

Traditional thermodynamic models create a unique physical
model for the building using metrics from different thermal
and atmospheric sensors. These approaches leverage traditional
regression techniques using equipment readings and measured
power consumption. This allows for high accuracy but is
heavily reliant on specialized equipment and cannot be applied
throughout a city-wide power grid. Using the Sutardja Dai Hall

building as an example of a commercial structure equipped
with a variable air volume (VAV) HVAC system, existing
models use measurements from the heating coils and pressure
measurements from the air ducts to estimate the thermal
baseline for the building.

x′(t) = At(x(t)) +Btq(x(t), u(t), v(t))

y(t) = Cx(t)

q(x(t), u(t), v(t)) = qEW (x(t), v(t)) + qwin(x(t), v(t))

+ qHVAC(x(t), u(t), v(t)) + qIG(t)
(1)

where the state vector x is the predicted temperatures of
different regions in the building. qEW represents convective
heat transfer and solar gains to the exterior walls, qwin repre-
sents convective and solar radiation gains through the windows,
qHVAC is a negative heat gain due to the HVAC system and
qIG represents internal gains due to occupancy, equipment and
other unmodeled uncertainties. y is then a vector containing
the averaged results for the predicted temperatures in different
groups of room. This allows us to build a highly accurate ther-
mal model and use as the baseline for the thermal temperatures
in the room while applying control, and then we can calculate
the deviations from the expected baseline values.

This control problem is highly reliant on installing the
necessary sensors and cannot be generalized to applying
predictive control across a power grid when only 30% of
the commercial buildings have the variable air volume (VAV)
HVAC system. It also allows us to calculate not just the
deviation due to control from the expected temperature comfort
zones in a building but also the difference in consumption
caused by it. Therefore, we use a similar model to baseline
power consumption which we can calculate to the expected
power consumption for the next day (24 hours) to a high degree
of accuracy without requiring specialized equipment by instead
choosing to use regional weather data. We augment our loss of
accuracy by using region-specific instead of building-specific
data, by understanding the evolution of the building’s historical
power usage using time series forecasting.

Support vector machines (SVMs) have been widely used in
the past. Dong et al. [4] made an early attempt in using SVMs
in building energy consumption prediction. Their model used
weather data and monthly utility bills as input to predict annual
building energy consumption in tropical regions, and reported
a percentage error within 4%. An approach using multiagent
systems at USC [2] reported a percentage error of 2.8%. We
aim to reach these levels of accuracy for our prediction of the

HVAC power consumption by the main supply fans in SDH
but our model does not currently support the entire HVAC
system and has not been tested on multiple buildings.

III. DATA

A. BRITE Data Preprocessing

Our data consists of historic data collected from the Berke-
ley Retrofitted and Inexpensive HVAC Testbed for Energy
Efficiency (BRITE) at Sutardja Dai Hall.

BACnet is a communication protocol that is used for build-
ing automation and control networks. Specifically, it allows
for the control of HVAC systems, lights, and other electronics
to allow building automation to communicate information
between one another regardless of the specific service the
building performs.

Using BACnet, we were able to retrieve the building’s
power consumption in its two main supply fans, known as
AHUs (air handling units) for a period of five months, from
2014-03-15 to 2015-08-15 in minute intervals. We then average
these values by hour to match our forecast data. These readings
were then preprocessed to have zero mean and unit variance
before being entered into our time series models. To adjust
for times where the fans were manually shut off (which is a
rare event that should not happen during normal functioning),
we see negative readings. To compensate for this, we use
linear regression to replace the values between two different
valid, positive readings. These values are all then stored in a
dictionary keyed by time.

An example view of our data is show below:

B. Forecast Data Preprocessing

Our weather forecast data is retrieved from forecast.io’s
Dark Sky API which offers both hourly and daily values for
a given latitude and longitude. From their hourly readings, we
obtain the following features:

• precipitation intensity, probability and type

• temperature

• apparent temperature

• humidity

• wind speed

• cloud cover

We also add to this the number of the week to account for
seasonality and a binary indicator of if it is a weekend or
not. Each feature in this (3000, 10) array, with 3000 hourly
readings (hours with missing features are dropped), is then
preprocessed to have 0 mean and unit variance.

All of the data provided by forecast.io does not have every
available feature for the BRITE Dataset due to technical issues
during that time or instrument malfunction. To account for this,
all values are stored in a dictionary keyed by time. If there
are any times that are missing, we also skip the appropriate
key for that time in our time series data. However, this would
normally cause a discontinuity within the temporal relation of
a day’s power readings. To ensure consistency across all of the
days we are predicting on, we choose to skip that day’s values
entirely to ensure that we only learn on days that we have full
weather data for.

C. Loss Metric Selection

For picking out our metric to measure the accuracy of our
model, we looked at Zhang’s study [2] that found that proposed
metrics for solar power forecasting fell largely into statistical
metrics for different temporal and geographical scales, uncer-
tainty quantification metrics, ramp characterization metrics and
economic metrics. From the first category, mean absolute error
was found suitable for evaluating uniform forecast error across
a span of a day and this is the metric we used to measure the
accuracy of our models.

IV. MODELS

From the temporal point of view, the simplest approach
to estimate forecasting baselines is that of climatology. The
climatology approach consists of using a constant long-term
average value throughout the entire forecasting period. This
average value is then used as a benchmark for the forecasting
skill with minimal effort. However, since building-specific
power forecasting has surpassed this greatly, we instead ap-
proximate the baseline trend using only our weather matching
model. We see that the weather model is able to approximate
the general seasonal trends, and we attempt to improve on
that model using the EM approach and the KNN and RNN
approaches.

V. WEATHER MATCHING APPROACH

The idea behind the weather matching apporach is to essen-
tially create a matrix A, in which each row ap is a difference
measurement for each of our weather features between the
forecasted values for the day we wish to predict and the
historical day, p, we have observed. Each of these differences
then has a weight stored in x it used to predict the absolute
mean corresponding difference in power values between day p

and the future day f we wish to predict. While training, f is
simply another historical day and we calculate the correlation
between the change in weather data and change in power
readings. So with n days, this gives us n ∗ (n − 2) points
to train on.

Specifically, the Lasso Model is structured with features
wp = [wp1 wp2 ... wp10], where wp1 is precipitation
intensity, wp2 is precipitation probability, and so on accord-
ing to Section III.B. Similarly, for another day f , we have
wf = [wf1 wf2 ... f10].

Defining ap and γp, we find:

ap = wf − wp
ap+1 = wf − wp+1

aj = wf − wj∀j ∈ (p, p+ n)

q = n ∗ (n− 1)/2

(2)


−− ap −−
−− ap+1 −−

...
−− ap+q −−



x1
x2
...
x10

 =


yp
yp+1

...
yp+q



γp = [γp,1 γp,2 ... γp,24]

γf = [γf,1 γf,2 ... γf,24]

yp = mean(abs(γp − γf))

Where γp are historical power readings for day p and γf are
the power readings for day f . After training to retrieve our
x1...x10 weights, we pass in the weather differences between
wf ′ , our future forecasted date.

For example, over the course of a 30 days,
from 2015-08-10 to 2015-09-10, it found the
following two days to be the most similar:

When we want to make a prediction, wf ′ stores the forecasted
days weather values and we create a new matrix An using
differences between wf ′ and all of our historical data.
Computing yn using our x weights correspondingly will now
be the predicted mean absolute differences in power.

We then train this using linear regression with Lasso
Regularization and obtain the following x coefficients for
differing number of components in PCA dimension reduction
as well as their explained variance ratio:

• Predicted Coefficients for # of Components = 2
[-0.60675826 -1.1959114]
Explained Variance Ratio:
[0.34663014 0.23113965]
Accuracy: 17.62

• Predicted Coefficients for # of Components = 3
[-0.60675826 -1.1959114 -0.60711793]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575]
Accuracy: 18.70

• Predicted Coefficients for # of Components = 4
[-0.60675826 -1.1959114 -0.60711793 0.50238137]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113]
Accuracy: 18.73

• Predicted Coefficients for # of Components = 5
[-0.60675826 -1.1959114 -0.60711793 0.50238137
0.84119556]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113
0.06818651]
Accuracy: 16.43

• Predicted Coefficients for # of Components = 6
[-0.60675826 -1.1959114 -0.60711793 0.50238137
0.84119556 -1.2150931]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113
0.06818651 0.03672205]
Accuracy: 15.55

• Predicted Coefficients for # of Components = 7
[-0.60675826 -1.1959114 -0.60711793 0.50238137
0.84119556 -1.2150931 -1.31080333]

Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113
0.06818651 0.03672205 0.03029435]
Accuracy: 14.15

• Predicted Coefficients for # of Components = 8
[-0.60675826 -1.1959114 -0.60711793 0.50238137
0.84119556 -1.2150931 -1.31080333 -0.1864261]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113
0.06818651 0.03672205 0.03029435 0.02658181]
Accuracy: 14.74

• Predicted Coefficients for # of Components = 9
[-0.60675826 -1.1959114 -0.60711793 0.50238137
0.84119556 -1.2150931 -1.31080333 -0.1864261 -
0.96710048]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113
0.06818651 0.03672205 0.03029435 0.02658181
0.0225175]
Accuracy: 14.15

• Predicted Coefficients for # of Components = 10
[-0.60675826 -1.1959114 -0.60711793 0.50238137
0.84119556 -1.2150931 -1.31080333 -0.1864261 -
0.96710048 -7.26094998]
Explained Variance Ratio:
[0.34663014 0.23113965 0.14911575 0.08784113
0.06818651 0.03672205 0.03029435 0.02658181
0.0225175 0.00082787]
Accuracy: 12.07

As we can see, dimensionality reduction does result in a loss
in data but due to the increasing n2 rate of the training size
based on n days, it is helpful to note that we can reduce
our dimensionality to 7 components with only a 2% cost
to accuracy. Our full ten dimensional model, however, does
guarantee us an accuracy of 12.07%, which is the mean
absolute error for each reading in proportion to the expected
reading. This is still much above industry standards and we
aim to lower it much further. However, this is evidence that
weather data alone can model general seasonal trends in power
readings, even at the hour level granularity.

VI. EXPECTATION MAXIMIZATION APPROACH

Now, we switch to an expectation maximization approach
to use time series forecasting to understand the conditional
dependence between a historical 24-hour measurement (the
recorded power readings for the day before the one we wish
to predict, d − 1) and the following 24-hours (the predicted
power readings of the day d). We project the time series
data points to a high dimensional regressor space where their
density can then be modelled using Gaussian Mixture Models
(GMMs). This estimate of the probability density then allows
us to perform short-to-medium term prediction by finding the
conditional dependencies of the unknown values.

A. Training

Taking a time series z consisting of n hourly power
readings:

z0, z1, z2, ..., zn−2, zn−1

We then conduct a delay embedding to create slices of
window size d and arrange them in a design matrix X:

X =


z0 z1 . . . zd−1
z1 z2 . . . zd
...

...
...

zn−d zn−d+1 . . . zn−1

 =


x0
x1
...

xn−d


The density of these points can then be modelled as a

Gaussian Mixture Model with the following probability density
function:

p(x) =

K∑
k=1

πkN (x|µk,Σk)

where N (x|µk,Σk) is the probability density function of
the multivariate normal distribution, µk represents the means,
Σk the covariance matrices, and πk the mixing coefficients for
each component k(0 < πk < 1,

∑K
k=1 πk = 1).

Here the number of components, which is the number of
Gaussian Mixtures, can be seen as the number of different
types of days we are learning. The means of each Gaussian
Mixture represents the average values for the power reading
over the course of that type of day. The conditional proba-
bilities then can be intuitively viewed as a measure of how
much the given time slice fitted one of the historical days we
have seen. The larger number of components, the greater the
different types of days we believe existed in the past.

We train this algorithm using the EM algorithm for finding
a maximum-likelihood fit given by

logL(θ) = log p(X|θ) =

N∑
i=1

log(

K∑
k=1

πkN (xi|µk,Σk))

where θ = {πk, µk,Σk}Kk=1 are the necessary statistics that
define the model.

The E-step is then to find the expected value for the log
likelihood with latent variables given our design matrix and
the estimation of θ(t), which is the estimate of θ at timestep t
given by:

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)]

This then requires us to calculate the probability, rik, that
sample xi is generated by the kth Gaussian mixture before we
can maximize the log likelihood in the M-step.

r
(t)
ik =

π
(t)
k N (xi|µ(t)

k ,Σ
(t)
k)∑K

j=1 π
(t)
j=1N (xi|µ(t)

j ,Σ
(t)
j)

θ(t+1) = arg max
θ

Q(θ|θ(t))
(4)

We can now estimate our parameters for timestep t + 1
with Nk being the number of samples in the kth component:

µ
(t+1)
k =

1

Nk

N∑
i=1

t
(t)
ik xi

Σ
(t+1)
k =

1

Nk

N∑
i=1

t
(t)
ik − µ

(t+1)
k)(xi − µ(t+1)

k)T

π
(t+1)
k =

1

Nk

N∑
i=1

t
(t)
ik

(5)

The E and M step are then alternately repeated until
convergence.

B. Predicting

Now, to predict the next future 24 hours F (unknown) we
use the past 24 hour values P (known). First, we split the
means and covariances of each component into it’s past and
future components

µk =

[
µPk
µFk

]
,Σk =

[
ΣPPk ΣPFk
ΣFPk ΣFFk

]

We can find the probability that a sample xPi with only
past values known belongs to a component k

tik =
πkN (xPi |µk,Σk)∑K
j=1 πjN (xPi |µj ,Σj)

Using this, we can find the conditional expectation of the
future values originating from component k’s F values and
make a prediction ŷi:

ỹik = µFk + ΣFPk (ΣPPk)−1(xPi − µPk)

ŷi =

K∑
k=1

tikỹik
(6)

C. Selecting Number of Components

To calculate the number of components, we had a choice
to either pick the value that provides the lowest Akaike
information criterion (AIC), given by

AIC = −2 logL(θ) + 2P

where P = KD + 1
2Kd(d+ 1) +K − 1

or to find the number of components which gives the
least absolute mean error on the 20% of points held out for
validation. We chose the latter for our model selection using
2360 slices of size 48 for training our model and 591 slices
of size 24 for our validation set.

Intuitively, increasing the number of components increases
the variation in our prediction which must be balanced so as
not to overfit the training data. We received our lowest error
with 40 components at 2.4041669.

To visually show the difference in variation, here we see
an example of a fitting with 10 components:

and here is an example of a fitting with 40 components:

We also wanted to understand what would happen if all
of our concentrations were not weighted equally. For this,
we used a Gaussian Mixture with a Dirichlet process prior
fit with variational inference to add regularization in order to
integrate information from prior distributions. Specifically, a
low value of the concentration prior prioritizes the weight of a
few components while the rest are close to zero, while a high
concentration prior has more highly active components. Here,
the number of specified components becomes an upper bound
while the actually active components in the model are much
fewer. Intuitively, this allows us to pick a set of mean days that
are the most representative of usual weekly behavior and will
be the most active concentrations. This has both advantages
and disadvantages.

Advantages:

• Automatic component selection as a small weight
concentration prior will only select a subset of the
components to be active

• Less variation caused by differing number of compo-
nents

• Less prone to overfitting as outlier values are regular-
ized by lower weights

Disadvantages:

• The presence of prior weighting introduces a bias to
the data and any data that does not conform to this
bias will be better fitted by finite mixture models

• Requires tuning of an extra hyperparameter

Using a maximum of 80 components, we see if
we can obtain a lower absolute mean error while
modulating our prior in 10 steps from 10−2 to 108.

We see the lowest error of 2.347834 at a prior value of
10ˆ3.

The predictions for this model are:

As we can see, this model is much more accurate in
predicting the large variation in data due to the larger max
component count without overfitting due to the presence of the
prior. In fact, the graph is largely correct in its peak magnitudes
aside from some being slightly shifted by an hour or two on
where their actual peak position should be.

Since this is most effective for stationary processes, we will
later attempt to augment TS forecasting with seasonal data to
account for the seasonality of power readings.

VII. K-NEAREST NEIGHBORS AND RECURRENT NEURAL
NETWORK APPROACHES

In order to better represent these temporal relations, we
implemented more complex models, focusing on a K-Nearest
Neighbors (KNN) model and a Recurrent Neural Network
(RNN). Based on the improvements of the EM Model over
the baseline model, we hypothesized that a more complex
model would be able to better learn the temporal relationships
and dependencies inherent in the historic data. Specifically, we
noticed that the EM model would underfit outliers of the model
and center at the mean predictions too often.

A. Iterated Time Series Forecasting Using K-Nearest Neigh-
bors

First, let’s take a look at non-regressive time series fore-
casting. Let yt denote the value of the time series at time point
t, then we assume that

yt+1 = f(yt, ..., y + tn+ 1) + εt

,

for some autoregressive order n and where t represents
some noise at time t and f is an arbitrary and unknown
function. The goal is to learn this function f from the data
and obtain forecasts for t+ h, where h ∈ 1, ...,H . Hence, we
are interested in predicting the next H data points, not just the
Hth data point, given the history of the time series.

In iterated forecasting, we optimize a model based on a
predicting for a window of one step. When calculating a H-
step ahead forecast, we iteratively feed the forecasts of the
model back in as input for the next prediction. Essentially,
what we are trying to approximate and maximize is [yt+1 :
yt+H |ytn+1 : yt] where yt+1 : yt+H = [yt+1, ..., yt+H] ∈
RH and ytn+1 : t = [ytn+1, ..., yt] ∈ RH where n is the
autoregressive window. To visualize this, for a window n = 2,
the model is visualized as:

The iterated strategy is still an unbiased estimator of [yt+1 :
yt+H |ytn+1 : yt] as it preserves the stochastic dependencies
of the underlying data. In terms of the bias-variance trade-off,
however, the accumulation of error in the individual forecasts
causes the model to have high variance. This means that
we will get a low performance over longer time horizons
H. To keep in parity with our EM predictions, we use 24
autoregressive terms in our historical window and iteratively
predict the power readings for 24 future hours. When including
the weather data, we append 10 further values containing our
weather metrics for the current time to the 24 autoregressive
terms.

The K-Nearest Neighbor (KNN) Algorithm is a non-
parametric method used for classification and regression. An
unlabeled vector (a query or test point) is classified by as-
signing the label which is most frequent among the k training
samples nearest to that query point. We use K=10 to look at
the 10 most similar days in the past to predict the next day.
We hope that this will overcome any averaging that occurs in
similar GMM approaches we attempted in the previous section.

Sample day of power readings predicted using only
iterated time series forecasting and no weather data:

Sample day of power readings predicted
using time series forecasting and weather data:

As seen based on the sample data alone, the inclusion
of weather data does not improve our iterated time series
forecasting much. Firstly, this is because the weather data for

only the t − 1-th term is used and no temporal relationship
is found amongst the weather features. Secondly, our errors
propagate as we step through iteration of our prediction. We
can see from the graphic that the errors in our predicted values
will further deviate later predicted values from being correct
due to skewed conditionals. We attempt to rectify this by using
a multi-output model.

B. Multi-Input Multi-Output (MIMO) Time Series Forecasting
using Recurrent Neural Networks

By using a model that trains on an H-dimensional output,
we avoid the problem of having our errors propagate from our
predictions. We then try to estimate the following function:

[yt+H , ..., yt+1] = f(yt, ..., ytn+1) + ε

Essentially, our new model of conditionals will look similar
to this:

A recurrent neural network (RNN) is a class of artificial
neural network where connections between units form a di-
rected cycle. This creates an internal state of the network
which allows it to exhibit dynamic temporal behavior. Unlike
feedforward neural networks, RNNs can use their internal
memory to process arbitrary sequences of inputs. For this
problem in particular, the Recurrent Neural Network encodes
the entire lookback window (the past H hours) and does
not assume any conditional dependences between iteratively
generated predictions and future predictions. The Recurrent
Neural Network should be better able to learn the historic
trends of days and not just average out historic trends. Our
inspiration for this model is based on previous RNN success in
domains with temporal relationships such as Natural Language
Processing, Audio, and Speech.

We use Long Short-term Memory (LSTM) neurons to
prevent disappearing gradients and for better bias. The baseline
architecture we chose was 2 layers of LSTM neurons with
hidden layer size of 64 and 256. We have not yet tuned the
architecture with any clear deliberation, but have included
RNN results to demonstrate the improvement of a more
complex model over the baseline and EM models.

The overall structure of the RNN is shown:

Sample day of power readings predicted using
only multi-output forecasting and no weather data:

Absolute Mean Error: 1.10714189049 using a historical
window H of size 38 and hidden layer size of 64

Sample day of power readings predicted using
only multi-output forecasting and weather data:

Absolute Mean Error: 1.18180182587 using a historical
window H of size 28 and a hidden layer size of 256

VIII. RESULTS

The following results are all measured in the absolute mean
errors on 24 hour predictions on a validation set of 591 slices

of 24 hour historical windows for all models except for RNN’s
without and with weather which had 38 hours and 28 hours
respectively as tuned hyperparameters:

Lasso EM EM with Dirichlet Prior

12.461124 2.404167 2.347834

K-NN w/o Weather KNN w/ Weather

1.256917 1.258889

RNN w/ Weather RNN w/o Weather

1.181802 1.107142

IX. CONCLUSION

One of the most surprising results was the high degree
of accuracy we were able to obtain for power time series
prediction using only the historical power data without any
weather information. While each of our progressive methods
from the weather based regression approach to EM, KNN,
RNN saw successively higher accuracy, the inclusion of
weather, even when using temporal relationships in RNNs,
saw a slight decrease or no deviation in the accuracy. This
may be due to the lack of complete weather forecasting data
from forecast.io causing us to remove days that are missing
values and causing discontinuities in the time series data that
our model erroneously learns.

While the weather series data alone had a high error at an
hourly level, we were able to reduce our error drastically using
EM. However, one of the problems we faced using EM was
the low variation in its predicted values that would not suitably
match the peaks in the observed data. To combat this, we used
a higher number of components while being cautious about
overfitting. Further, we observed that using a Dirichlet Prior
allowed us to predict the peaks highly accurately but still had
an error above 2 due to the offsets in peak position in the range
of a few hours. To combat this, we tried to employ time series
forecasting that concretely modeled this temporal relation in
time series data in two manners, iteratively (using KNN) and
directly (using RNN). The latter was able to predict the power
consumption in Sutardja Dai Hall by the main supply fans of its
HVAC system with a lowest mean absolute error of 1.107142.

X. FUTURE WORK

We can further extend this work to model the power
consumption by the entirety of the HVAC system in the
BRITE Sutardja Dai Hall system and then further extend our
training set to multiple buildings to see how well it learns
for other commercial buildings located in various different
districts, housing different types of services, and geospatially
well separated. This will allow us to see how well each of
these models adapt to the various different types of buildings
that may all be present on one power grid.

Furthermore, once we have trained the model to predict the
power usage patterns for multiple buildings on a power grid,
we can apply intelligent control for peak shaping while having
an accurate baseline to understand our deviation.

ACKNOWLEDGMENT

The authors would like to thank Qie Hu, Professor Claire
Tomlin, and the entire Hybrid Systems Laboratory at UC
Berkeley for their support throughout this power systems
project. We would also like to thank Professor Martin Wain-
wright and the CS281A course staff for an incredible learning
experience this semester.

REFERENCES

[1] US Energy Information Administration ”The Annual Energy Outlook
2013” In Tec. Rep. ’13

[2] J. Zhang, A. Florita, B.-M. Hodge, S. Lu, H. F. Hamann, V. Ba-
nunarayanan, and A. M. Brockway A Suite of Metrics for Assessing
the Performance of Solar Power Forecasting In Solar Energy

[3] N. Li, J. Kwak, B. Becerik-Gerber, M. Tambe Predicting HVAC Energy
Consumption in Commercial Buildings Using Multiagent Systems

[4] B. Dong, C. Cao, E.L. Siew Applying Support Vector Machines to
Predict Building Energy Consumption in Tropical Regions In Energy
and Buildings ’05

[5] E. Eirola, A. Lendasse Gaussian Mixture Models for Time Series
Modelling, Forecasting, and Interpolation

[6] Q. Hu, F. Oldewurtel. Model Identification of Commercial Building
HVAC Systems during Regular Operation - Empirical Results and
Challenges In ACC ’16

[7] A. Aswani, N. Master, J. Taneja, A. Kriouskov, D. Culler, C. Tomlin.
Energy-Efficient Building HVAC Control Using Hybrid System LBMPC
In NMPC ’12

[8] A. Aswani, N. Master, J. Taneja, V. Smith, A. Kriouskov, D. Culler,
C. Tomlin. Identifying Models of HVAC Systems Using Semiparametric
Regression In NMPC ’12

