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Abstract

Recent advances in Generative Adversarial Networks (GANs) have shown much
promise in the domain of image generation, especially using deep multi-scale
architectures. Tree-search methods, on the other hand, have been successful
in offline domains but not online learning. This work utilizes a GAN to learn
a dynamics model, which is then used for online tree search. We propose a
model-based reinforcement learning framework leveraging a combination of video
prediction with GANs and online tree-search methods. Our method attempts
to combine the near-horizon benefits of a learned dynamics model with the far-
horizon benefits of a value network. Experimental results show that the proposed
architecture is generally able to produce visually-realistic predictions and achieve
performance results somewhat comparable to state-of-the-art such as DQN.

1 Introduction

Over the past several years, the field of deep reinforcement learning (RL) has seen much success
in its application of model free approaches to solving many complex planning tasks [15]. The core
idea behind model free reinforcement learning is that instead of searching all possible futures of a
given state for the action trajectory which best maximizes some objective (as in model based RL), we
implicitly learn a mapping from state-action pairs to some measure of expected future value, and then
choose an action which maximizes this expected future value. Although the model free approach
provably yields a solution which is equivalent to the model based approach, there is an immense
computational cost in learning such a value function, which implicitly codes an objective-centric
model of the environment with which an agent interacts.

In contrast, model based reinforcement learning often yields immediately optimal agents, with
the caveat that the agent has direct access to a model of its environment. However, deep learning
approaches to model based RL have been surprisingly less successful, despite the prospect of one-shot
optimality. For the most part, applications of deep learning have failed because generative models
have been unable to avoid the propagation of uncertainty of state in highly under-constrained Markov
Decision Processes (MDPs). With the recent success of generative adversarial approaches for a variety
of multi-modal generation tasks, it is natural to wonder if an application of Generative Adversarial
Networks (GANs) [8] to model based RL will eliminate the distribution mismatch problem of model
learning using neural networks. Furthermore, it is of interest to consider a joint approach to deep RL
using the state of the art in model-free approaches in combination with the aforementioned use of
GANs.

By using a combination of model-based and model-free approaches, our method allows an agent
to plan in any environment by learning a model of the system. We assess the performance of our
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agent in a variety of Atari environments to compare with other state-of-the-art RL algorithms [15].
Although we believe our method should perform well in 3D and real-world environments, Atari
provides a baseline to judge our performance on complex yet lower-dimensional problems. Extending
our algorithm to 3D and real-world environments is noted later in our paper as an area for further
exploration but due to time and resource constraints, we did not explore this ourselves.

2 Related Work and Comparison

Unsupervised learning of video representations for frame prediction is a heavily researched problem
in deep learning. A recurrent temporal restricted Boltzmann machine (RTRBM) [5] introduced
recurrent connections in RBM to find temporal correlations from sequential data. The structured
RTRBM (sRTRBM) extended this to find further structures between hidden variables and observations.
However, more recently, Ranzato et al., inspired from language modeling, defined a recurrent
architecture for predicting frames in a discrete space of patch clusters [3]. This was later adapted
to an LSTM model [4] by Srivastava et al. to generate videos of hand-written digits moving up
and down. Guo et al. [7] used an action-conditional model similar to variational-auto-encoders
(VAE) to predict future frames in classic Atari games. Mathieu et al. [1] used a multi-scale GAN
approach with different losses to generate video for both Atari and real-world data. In contrast to
previous works with the exception of Guo et al., we are solving a problem where control variables
have a direct effect on temporal dynamics. From our initial tests, we found that recursively applying
action-conditional prediction in the VAE architecture proposed by Guo et al. led to further blurriness
in the predictions as we expected. By using GANs to learn the dynamics, we hope to alleviate this
problem of recursively increasing uncertainty.

In addition, there has been some amount of investigation into the reinforcement learning aspects
of this work. In particular, tree search has been applied with success to model-based deep learning
applied to Atari games by Guo et al. in [2]. However, that work focuses more on using imitation
learning to train on trajectories observed from an agent using Monte Carlo Tree Search. In particular,
the agent is an Upper Confidence Bound applied to Tree Search (UCT) agent [13]. The game emulator
is used for the model dynamics that allow the state tree to be constructed, but this constrains the
agent to act in offline settings only, as the UCT agent is very computationally expensive. Once UCT
rollouts are recorded, a new agent that is able to act online is trained using those trajectories. Apart
from this work, there has also been interest in learning dynamics models using image observations.
Many image to image methods utilizing deep learning have been attempted, including Variational
Autoencoders (VAEs) and Convolutional Neural Networks (CNNs). Notably, approaches by N.
Wahlstrom et al. and M. Watter et al [9], [11]. attempt to learn dynamics in the latent pace. While
this work will focus on utilizing multi-scale GANs for image to image model learning, these different
approaches can be viewed as a black box. They can all be easily extended or swapped in for our
approach.

3 Proposed Approach

There are two primary components to our architecture: action-conditional prediction and tree search.
The goal of action-conditional prediction is to learn a function f : x1:t,a1:t → xt+1, where x1:t and
a1:t are the frames and actions from time 1 to t. The goal of tree search, assuming a deterministic
environment, is to find a sequence of actions that will lead to the highest reward

∑t
i=1 ri. To do

this, we recursively apply the learned dynamics function f , substituting xt with a generated frame
and iterating through all possible actions for at recursively in a tree-like fashion. At the leaves
in the tree, defined as nodes at a set terminal depth, we evaluate the image using a value network
v : xt → E[zt|xt = x, at...T ∼ p] that predicts the outcome from position s of games played by
using a good policy π, in this case a DQN.

The intuition of our approach is that the learned dynamics model will allow our agent to plan in
the near-horizon, while the learned value network will allow our agent to leverage the benefits of
far-horizon values for each state. This online approach is vaguely similar to Model Predictive Control
(MPC), where the optimal actions for a fixed horizon horizon is computed, but only the first action is
actually used.
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Algorithm 1: Online Tree Search with Learned Dynamics from GANs
Result: Model-free reinforcement learning guided with learned GAN dynamics

1 D ← (s, a, s′, r) training rollouts on randomized actions;
2 Q ← Action-value function initialized with random weights;
3 G ← Generative dynamics function initialized with random weights;
4 D ← Discriminator dynamics function initialized with random weights;
5 while optimize do
6 Root r = Node(s);
7 Child queue C ← r );
8 while C not empty do
9 for a′ ∈ action space of s do

10 s′ ← copy of current state s;
11 s′ = G(s′, a′);
12 if current depth < maximum depth d then
13 C ← Node(s′);
14 else
15 if V(s′) > best value then
16 best value= V(s′);
17 best node = Node(s′);
18 end
19 end
20 end
21 end
22 return first action from r → best node
23 end

3.1 Action-conditional Prediction

The multi-scale network proposed by Mathieu et al. [1] is very similar to what we used, with the
addition of more layers to condition on both actions at−i:t and frames xt−j:t where i and j are fixed
parameters. While training DQN to create a policy network as stated above, we collect a1:t and x1:t

to train our action-conditional GAN according to f : xt−i:t,at−j:t → xt+1.

We solve many of the traditional problems associated with networks for video prediction, namely (1)
convolutions only account for short range dependencies and (2) using an l2 or l1 loss produces blurry
predictions. These would be very problematic in our approach because (1) would create predictions
that are accurate locally but not globally and (2) would lead to compounding uncertainty that would
make tree search impossible. (2) is the primary problem we encountered when using Guo et al. [7]
for video prediction. As expected, we did not encounter either when using the multi-scale network.

Our multi-scale network is defined as follows. Let uk be the upscaling factor up to size sk. Xt
k, Y t

k
are downscaled versions of Xt and Y t of size sk where Xt denotes the frames used to generate
Y t, the prediction. at is the action given at time step t that would produce Y t+1 when run in the
simulator. Gk is a component of our network that learns to predict Yk − uk(Yk−1) from Xk, a guess
of Yk, and at. In essence, each component of our network is defined as:

Ŷk = Gk(X) = uk(Ŷk−1) +G′k(Xk, uk(Ŷk−1), a
t) (1)

We use these components recursively to make predictions at an increasingly large scale. Our generator
network is illustrated in Figure 1 with appropriate modifications for conditioning on actions.

Our discriminator model D predicts the probability whether a frame Ŷ t given frames Xt and actions
at is the real Y t or made by our generator G. Note that any Y (and X respectively) is composed of j
(and i respectively) frames. Like our generator, our D is also a multi-scale network but with a single
output, a probability. We use a modification of the discriminator network proposed by Mathieu et. al.
in [1]:
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Figure 1: Multi-scale architecture with action-conditioning

LD
adv(X,Y ) =

Nscales∑
k=1

Lbce(Dk(Xk, Yk, a
t), 1) + Lbce(Dk(Xk, Gk(X), at), 0) (2)

where Lbce is just binary cross-entropy loss, Dk is our discriminator at scale k. The loss for our
generator is thus:

LG
adv(X,Y ) =

Nscales∑
k=1

Lbce(Dk(Xk, Gk(Xk), a
t), 1) (3)

Minimizing this loss is equivalent to increasing the loss of theD, making it harder to discriminate real
and generated results. In practice, minimizing these two losses together often leads to instability. This
can happen if the generator products results that sufficiently trick the discriminator without looking
like real data. To avoid this problem, we train the generator to minimize a function αLG

adv + βL2.
Increasing β leads to greater stability but also more blurriness. This is a trade-off we’ve tuned in our
network.

3.2 Tree Search

Tree search methods have been commonly used in game theoretic settings. Popular methods include
mini-max game trees, alpha-beta pruning, Monte Carlo Tree Search, and B* search [14]. In our
approach, we focus on vanilla game tree search in order to demonstrate the investigate the effectiveness
of online tree search. We discuss possible extensions in the conclusion.

Each game tree is constructed with the current observation as the root of the game tree. For each
possible action a′ from the current state s, we utilize the learned dynamics to predict the child
nodes: s′i = G(s, a′),∀i ∈ n, where n is the number of possible actions from current state s. Then,
depending on the hyperparameter of terminal depth d, we keep expanding the child nodes using the
learned dynamics. Once terminal depth is reached, we calculate the estimated value at each leaf node:
V(s′i) = max

a′
G(s′i, a′). Given the child with the largest value V(s′i), we take the action from the root

that led to that child. For an example of what a search tree would look like, see Figure 2.

For the purposes of demonstrating this method in this work, we use a hyperparameter of d = 1. It
is likely that increasing depth d may result in faster convergence at the cost of exponentially more
computation.

4 Experiments

4.1 Processing Data

Our images are normalized observations from OpenAI Gym environments of size 210 x 160 pixels.
We used the ’v3’ deterministic versions (ex. BreakoutDeterministic-v3) of these games to reduce the
randomness from our actions. The v0 environments replayed the previous actions with a probability
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Node(s)
Depth 0

Node(s′1)
Depth 1

Node(s′′3) ⇒ V(s′′3) = 8
Depth 2

G(s′1 , a1) = s′′3

Node(s′′2) ⇒ V(s′′2) = 4
Depth 2

G(s′1, a0) =
s′′2

G(s, a1) = s ′
1

Node(s′0)
Depth 1

Node(s′′1) ⇒ V(s′′1) = 10
Depth 2

G(s′0 , a1) = s′′1

Node(s′′0) ⇒ V(s′′0) = 6
Depth 2

G(s′0, a0) =
s′′0

G(s,
a0)

= s
′
0

Figure 2: Game search tree example with a depth of d = 2. The value network is evaluated at the
leaves, and the child with the best expected value is used to determine which best action should be
taken. In this case, from the root node Node(s), the algorithm will return action a0 as the best action.

(a) Input 0 (b) Input 1 (c) Input 2 (d) Input 3 (e) Scale 0 Gen (f) Scale 0 GT

(g) Scale 1 Gen (h) Scale 1 GT (i) Scale 2 Gen (j) Scale 2 GT (k) Scale 3 Gen (l) Scale 3 GT

Figure 3: These pictures were made by our generator at each scale given Input frames 0 to 4. Notice
that the output can differ at lower scales but produce very accurate predications at higher scales. This
is because we sum Lbce across all scales for our loss function.

of 0.25 and the non-deterministic environments took a random number of time steps sampled from
{2, 3, 4} between each state which made it difficult for our action-conditional GAN to converge. We
normalized our inputs by mapping the range [0, 255] of pixels to [-1, 1].

We one-hot encode our actions and stretch/reshape them to fit to each scale of the generator. This
block of actions is then inserted as another layer to each scale of the network in both the generator
and discriminator as is common practice for conditional GANs [12]. We found our model converged
well when exposed to 2 or more actions, setting j ≥ 2. Otherwise, the networks would learn to just
ignore the actions given as input. Experimenting with the Atari environments in OpenAI Gym, we
found this is likely because it usually takes two actions in any direction to create movement in that
direction. Two actions in opposite directions will cancel out and cause no movement on the screen.

4.2 Quantitative Evaluations

In this section, we evaluate both the visual quality of our predictions and the performance of our tree
search in various Atari environments.

The images generated by our action-conditional framework can be seen in both Figure 3 and Figure
8. To quantitatively evaluate the quality of our predictions, we used the Peak Signal to Noise Ratio
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(a) Breakout a0,2,4 (b) Breakout a1,3,5 (c) Pong a0,2,4 (d) Pong a1,3,5

Figure 4: We show the action-conditional output of our network on Pong and Breakout environments.
Both have an action space of size 6 but all actions reduce to stopping or continuing movement in
direction of motion.

(PSNR), Equation 4, between the true frame Y and our prediction Ŷ as well as Sharp. Diff., Equation
5, to measure loss of sharpness from Y to Ŷ .

PSNR(Y, Ŷ ) = 10 log10
max2

Ŷ
1
N

∑N
i=0(Yi − Ŷi)2

(4)

Sharp.Diff .(Y, Ŷ ) = 10 log10
max2

Ŷ
1
N (

∑
i

∑
j |(∇iY +∇jY )− (∇iŶ +∇j Ŷ )|)

(5)

where ∇iY = |Yi,j − Yi−1,j | and∇jY = |Yi,j − Yi,j−1|.
We compared our results for PSNR and Sharp. Diff. with that given by Mathieu et al. [1] as our
architecture for generation is rather similar to theirs. We expected some degradation due to the
additional task of conditioning on the actions. Thus, the results found in Table 1 were not surprising.

PSNR Sharp. Diff.
Breakout non-action 22.9 13.3
Breakout action 14.5 12.8
Pong non-action 22.5 17.2
Pong action 13.7 15.0
Ms.Pacman non-action 26.9 14.5
Ms.Pacman action 23.2 7.9
BeamRider non-action 3.0 12.3
BeamRider action 1.4 10.2

Table 1: PSNR and Sharp. Diff. values given by our action conditional network and the non-action
conditional network proposed by Mathieu et al. [1] that represents the state-of-the-art in the space.
Each network is trained to 300,000 iterations before the PSNR and Sharp. Diff. values are recorded.

5 Conclusion

This paper introduced a new architecture for model-based reinforcement learning using both model-
free and model-based components. We adapt a state-of-the-art multi-scale video prediction algorithm
to condition on action as well as previous frames in order learn the dynamics of the game environment.
We then use these learned dynamics to perform recursive planning via tree search. Our experimental
results have shown there is much promise in this architecture, as we have achieved performance
in some environments comparable to that of DQN. Furthermore, since our architecture is domain
invariant, we expect it would generalize well to many other visual RL problems including real-world
data and perhaps even 3D environments. Since there are many approaches to learning dynamics
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DQN vs. DQN + Tree Performance on Pong

(a) Results for Pong

Figure 5: Our method speeds up training initially for Pong but converges at a lower solved rate than
the DQN. The tree of depth d = 2 took too long to run, but performed well. This suggests that further
optimization is required.The results do suggest that an online search tree is potentially powerful in
initial scenarios where exploration is crucial in unclear states.

and evaluation game trees, the proposed approach is extendable to a variety of different approaches.
To name a few, the dynamics can be learned instead through a VAE, and more complex game trees
methods can be utilized, such as Monte Carlo Tree Search. In future work, we hope to study and
improve our algorithm’s performance in a larger variety of environments.

Lessons Learned

This project was far harder than we originally imagined. Although we wanted to test a wide variety
of environments and algorithms for comparison in our original proposal, we spent so much time
building and evaluating our model to its current state that we didn’t have time for further comparisons.
Instead, we’ve left that as something we intend to follow up on in the future. The biggest lesson we
learned from this project is the importance of planning specific deadlines while creating a proposal
and of keeping track with those deadlines over time.

We’ve also learned a great deal from the papers we had to read on our topic. We both learned about
the latest in image generation and deep reinforcement learning. This is not our first deep learning
graduate class but this class, above any other, has taught us how to carry a research project from
beginning to end. A big part of that was how many times we had to pivot our initial hypotheses.
This work initially began as an a simple idea of adding Generative Networks to Google’s work on
Auxiliary Tasks for Model-free Reinforcement Learning. However, we soon ran into challenges,
and pivoted after thinking about model-based methods acting as a guide for model-free learning
approaches. Numerous conversations with graduate students and professors helped us along while
we were pivoting, and is something we have learned to leverage much more throughout the process.
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6 Appendix

6.1 Failure Cases

(a) Generated 0 (b) Generated 1 (c) Generated 2 (d) Generated 3 (e) Generated 4 (f) Generated 5

(g) Ground Truth 0 (h) Ground Truth 1 (i) Ground Truth 2 (j) Ground Truth 3 (k) Ground Truth 4 (l) Ground Truth 5

Figure 6: Our action-conditional GAN generating images for the Ms.Pacman environment. These
did not make it into the paper but were a central part of our midpoint and final presentations. When
combining action-conditional prediction with our tree search approach, we couldn’t get Ms.Pacman
to converge despite careful parameter tuning. We believe this is because of the large amount of
uncertainty on the actions of the ghosts but have yet to verify.

(a) Generated 0 (b) Generated 1 (c) Generated 2 (d) Generated 3

Figure 7: Beam Rider represents a failure case for our prediction algorithm. Even when removing the
action-conditional input, our network still failed to converge to a good solution. This is represented by
the PSNR and Sharp. Diff. scores in Table 1 which are significantly lower than for other environments.
We believe this is because our data collection function samples for areas of movement in the image.
Because the entire image is moving, it is thus difficult to focus on a region to collect data from.

6.2 Notes

The architecture for our multi-scale video prediction algorithm varies in the number of layers at
each level but we did not believe this to be significant enough to include in the paper. Because we
condition on actions in addition to frames, we add an additional 2 convolutions and layers to each
level to allow the propagation of signals from the actions without further loss of information relative
to the vanilla architecture. Despite this, we still do suffer from a reduction in Sharp. Diff. and PSNR.
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(a) Our algorithm does not converge for Breakout. This was surprising to us as Pong is a very
similar environment where we achieved comparable results. This warrants further investigation but
we believe this may be due to our value function being unable to interpret the noisy output of our
action-conditional prediction. Further experiments with a joint training approach could resolve this
issue.
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(b) Our algorithm does not converge for Beamrider. This was not surprising to us as we knew
predictions for Beamrider were very bad. Further experiments with a joint training approach may
also resolve this issue.

Figure 8: Our approach did not converge well on the Breakout and Beamrider.
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